

Representation framework of perceived object softness characteristics for active robotic hand exploration

Ricardo Martins

rmartins@isr.uc.pt - www.isr.uc.pt/~rmartins

PhD Advisor: Prof. Jorge Dias ISR - Institute of Systems and Robotics University of Coimbra

Objectives

The elementary spatial representation of perceived softness is described as a probabilistic combination of softness description of reference sample materials;
The perceived softness is represented based on previous experience and knowledge, to incorporate uncertain and to be progressively updated;

<u>Haptic memory – perceived softness model of</u> <u>the reference materials</u>

•Characteristic signature of each of the reference materials, m, is modeled by:

$$C_{\rm P}^{m}(C_{\rm P}) = a_1^m C_{\rm P}^{\frac{3}{2}} + a_2^m \qquad C_{\rm P}^m(C_{\rm A}) = a_2^m C_{\rm A}^{\frac{3}{2}} + a_1^m$$

Novel objects progressive representation update

•Volumetric discrete grid;

• The knowledge about the softness of a voxel, m_l , after n batches of measurements is modeled trough a probability distribution function:

 $p(m_l | \mathbf{D}_n^l) : m_l \in \{\text{Material}_1, \text{Material}_2, \dots, \text{Material}_M\}$

•For each voxel *I*, the set D'_{n-1} contains the *n*-1 measurements influencing that voxel

$$p(m_l | \mathbf{D}_n^l) = \beta_1 \beta_2 \prod_{i=1}^n p(m_l | \mathbf{D}_j^l) = \beta_1 \beta_2 p(m_l | \mathbf{M}_i^l) p(m_l | \mathbf{D}_{n-1}^l)$$

• $p(m_l | \mathbf{M}_i^l)$ converts the measurements $\mathbf{M}_k = (\mathbf{C}_{P}, \mathbf{C}_A, \mathbf{C}_D)$ in

- $C_P(C_D) = a_1 C_D + a_2 \qquad C_P(C_A) = a_3 C_A + a_4$
- •The curve parameters (a_1, a_2, a_3, a_4) for each reference material, m, can be learnt by performing several human demonstrations of unaxial palpation of the test materials.
- •The parameters (a_1, a_2, a_3, a_4) for each reference material, *m*, are estimated by least square estimate

 $Material_1$

 $Material_2$

Material₃

68.1

365.6

1832.00

• Reference materials contact interaction signature:

 C_P - Contact Intensity C_A - Contact area C_D – Contact indentation in the object normal surface

TABLE I: Moo material	del parame	eters estim	ation for	each	reference
Reference Material	a_1	a_2	a_3	a_4	

19.73

16.01

7.57×10⁻

estimation of softness values m_l of voxel l.

• Novel objects representation update during exploration:

3.30

2.77

⁻⁶ 9.309

16.05

7.64

 5.92×10^{-6}

FP7-2008 - 231640

HANDLE : *Developmental pathway towards autonomy and dexterity in robot in-hand manipulation* is a Large Scale Integrated Project coordinated by the University Pierre and Marie Curies of Paris and includes a consortium formed by nine partners from six EU-countries: France, UK, Spain, Portugal, Sweden and Germany.